+234 8079917938, +234 7064701747, +234 9082907092 centralinfo@noun.edu.ng

Career Profile

Dr. Etido Patrick Inyang is a distinguished scholar in theoretical and applied nuclear physics with extensive expertise in quantum physics. His academic foundation was laid with a B.Sc. (Hons) in Education Physics (Second Class Upper) in 2009, followed by a PGD in Physics (2014), an M.Sc. in Applied Nuclear Physics (2018), and a Ph.D. in Theoretical Nuclear Physics (2021), all from the University of Calabar. Since joining the National Open University of Nigeria (NOUN) as a Lecturer II in 2020, Dr. Inyang has excelled in teaching, mentoring, and research.

His research interests include quantum thermodynamics, molecular processes in external fields, information theory, nuclear and particle physics, and theoretical chemistry of diatomic molecules. Dr. Inyang has over 90 peer-reviewed publications, with more than 60 indexed by Scopus and over 1450 Google Scholar citations, ranking him as one of the most cited scholars in his department.

Read more...

He has received several accolades, including the Science Father’s Best Researcher Award (2022, 2023), recognition among Nigeria’s top 500 authors by scholarly output, and TETFund and NOUN Senate research grants. In 2023, he became a Post-Doctoral Fellow at Universiti Malaysia Perlis.

Dr. Inyang is also a Subject Editor for the Faculty of Science Journal at the University of Nigeria and a Nuclear Consultant for Petrotech Oil Field Solutions. A dedicated mentor and problem solver, he is an active participant in international conferences and a proud member of the Nigerian Institute of Physics.

Name: Etido Patrick Inyang

06481
Headquarters
Science
Physics
Lecturer I
einyang@noun.edu.ng
08032738073

PhD(Theoretical Physics),

M.Sc.(Nuclear Physics),

PGD(Physics),

B.Sc. Education Physics (Upper Division)

Institution National Open University of Nigeria, Jabi, Abuja 
Position                      – Lecturer I                                                                      (2024 till date)
      Lecturer II                                                                            (2020 -2023)
Responsibilities         –           Lectures Physics courses to all students from year 1 to 
Final year. (Courses taught include: PHY 402:  Nuclear Physics, PHY 192: Introductory Practical Physics II, PHY 202: Modern Physics, PHY 312:    Mathematical Methods for Physics II , PHY 191: Introductory Practical Physics I, PHY 456: Nuclear Reactor Physics, PHY 401: Elementary Particle Physics).
Institution –        University of Calabar, Calabar (2018 to 2020)
Position                       –       Assistant Lecturer
Responsibilities          –       Assisting my PhD supervisor with Lectures in Physics courses.                                     

1. Inyang, E. P., Nwachukwu, I. M., Ekechukwu, C. C., Ekong, I. B., William, E. S.,
Lawal, K. M., Simon, J., Momoh, K. O., & Oyelami, O. A. (2024). Analytical solution of
the class of inversely quadratic Yukawa potential with application to quantum
mechanical systems. Eurasian Physical Technical Journal, 21(3).
https://doi.org/10.31489/2024No4/
2.Inyang, E. P., Aouami, A. E. L., Ali, N., Endut, R., Rusli, N., & Aljunid, S. A. (2024).
Determination of probability density, position and momentum uncertainties, and
information theoretic measures using a class of inversely quadratic Yukawa potential.
Scientific Reports. https://doi.org/10.1038/s41598-024-78969-0
3.Eyube, E. S., Makasson, C. R., Omugbe, E., Onate, C. A., Inyang, E. P., Tahir, A. M.,
Ojar, J. U., & Najoji, S. D. (2024). Improved energy equations and thermal functions for
diatomic molecules: A generalized fractional derivative approach. Journal of Molecular
Modeling, 30, 419. https://doi.org/10.1007/s00894-024-06208-4
4.Omugbe, E., Inyang, E. P., Horchani, R., Eyube, E. S., Onate, C. A., & Targema, T. V.
(2024). The correspondences between variance and information entropies of a particle
confined by a q-deformed hyperbolic potential. Modern Physics Letters A.
https://doi.org/10.1142/S0217732324501517
5.Omugbe, E., Horchani, R., Okoro, N. J., Eyube, E. S., Onate, C. A., Inyang, E. P., Eze,
V. C., & Feddi, E. (2024). Non-relativistic energy spectra of diatomic molecules confined
in a modified Scarf potential via supersymmetric WKB approach. Molecular Physics.
https://doi.org/10.1080/00268976.2024.2390591
6.Inyang, E. P., Ali, N., Endut, R., Rusli, N., & Aljunid, S. A. (2024). The radial scalar
power potential and its application to quarkonium systems. Indian Journal of Physics.
https://doi.org/10.1007/s12648-024-03335-9
7.Ibanga, E. A., Inyang, E. P., & Agbo, G. A. (2024). Investigation of cyclic properties of
solar and geomagnetic activities: Implication for global surface temperature variability.
Eurasian Physical Technical Journal, 21(2), 102–111.
https://doi.org/10.31489/2024No2/102-111
8.Inyang, E. P., Aouami, A. E. L., Ali, N., Endut, R., Ali, N. R., & Aljunid, S. A. (2024).
Information entropies with Varshni-Hellmann potential in higher dimensions. Physics
Open, 100220. https://doi.org/10.1016/j.physo.2024.100220
9.Inyang, E. P., Ali, N., Endut, R., & Aljunid, S. A. (2024). Energy spectra, expectation
values, and thermodynamic properties of HCl and LiH diatomic molecules. Eurasian
Physical Technical Journal, 21(1), 124–137. https://doi.org/10.31489/2024No1/124-137
10.Inyang, E. P., Ali, N., Endut, R., Rusli, N., Aljunid, S. A., Ali, N. R., & Asjad, M.
(2024). Thermal properties and mass spectra of heavy mesons in the presence of a point-

like defect. East European Journal of Physics, 1, 156–166. https://doi.org/10.26565/2312-
4334-2024-1-13
11.Omugbe, E., Eyube, E. S., Onate, C. A., Njoku, I. J., Jahanshir, A., Inyang, E. P., &
Emeje, K. O. (2024). Non‑relativistic energy equations for diatomic molecules
constrained in a deformed hyperbolic potential function. Journal of Molecular Modeling,
30(74). https://doi.org/10.1007/s00894-024-05855-x
12.Abu-Shady, M., & Inyang, E. P. (2024). Effects of topological defects and magnetic
flux on dissociation energy of quarkonium in an anisotropic plasma. East European
Journal of Physics, 1, 167–174. https://doi.org/10.26565/2312-4334-2024-1-14
13.Abu-Shady, M., Omugbe, E., & Inyang, E. P. (2024). Approximate bound state
solutions of the fractional Schrödinger equation under the spin-spin-dependent Cornell
potential. Journal of the Nigerian Society of Physical Sciences, 6, 1760–1771.
https://doi.org/10.46481/jnsps.2024.1771
14.Lawal, K. M., Inyang, E. P., Ibanga, E. A., & Ayedun, F. (2023). Assessment of
indoor radon gas concentration in the National Open University of Nigeria: A case study
of Calabar Study Centre. East European Journal of Physics, 4, 371–375.
https://doi.org/10.26565/2312-4334-2023-4-47
15.Inyang, E. P., Omugbe, E., Abu-Shady, M., & William, E. S. (2023). Investigation of
quantum information theory with the screened modified Kratzer and a class of Yukawa
potential model. The European Physical Journal Plus, 138(969).
https://doi.org/10.1140/epjp/s13360-023-04617-7
16.Edet, C. O., Al, E. B., Ungan, F., Inyang, E. P., Ali, N., Ramli, M. M., Endut, R., &
Aljunid, S. A. (2023). Influence of perturbations on linear and nonlinear optical
properties of quantum dots. The European Physical Journal Plus, 138(904).
https://doi.org/10.1140/epjp/s13360-023-04519-8
17.Obu, J. A., Inyang, E. P., Ntibi, J. E., Akpan, I. O., William, E. S., & Inyang, E. P.
(2023). The effect of Debye mass on the mass spectra of heavy quarkonium systems and
its thermal properties with a class of Yukawa potential. Jordan Journal of Physics, 16(3),
329–339. https://doi.org/10.47011/16.3.8
18.William, E. S., Inyang, S. O., Ekerenam, O. O., Inyang, E. P., Okon, I. B., Okorie, U.
S., Ita, B. I., Akpan, I. O., & Ikot, A. N. (2023). Theoretic analysis of non-relativistic
equation with the Varshni-Eckart potential model in cosmic string topological defects
geometry and external fields for selected diatomic molecules. Molecular Physics.
https://doi.org/10.1080/00268976.2023.2249140
19.Faithpraise, F. O., & Inyang, E. P. (2023). Bound state and ro-vibrational energy
eigenvalues of selected diatomic molecules with a class of inversely quadratic Yukawa
plus Hulthén potential model. East European Journal of Physics, 3, 158–166.
https://doi.org/10.26565/2312-4334-2023-3-12

20.Obu, J. A., Inyang, E. P., William, E. S., Bassey, D. E., & Inyang, E. P. (2023).
Comparative study of the mass spectra of heavy quarkonium systems with an interacting
potential model. East European Journal of Physics, 3, 146–157.
https://doi.org/10.26565/2312-4334-2023-3-11
21.Inyang, E. P., Ntibi, J., Ibanga, E. A., Ayedun, F., Inyang, E. P., & William, E. S.
(2023). Thermal Properties, Mass Spectra, and Root Mean Square Radii of Heavy
Quarkonium System with Class of Inversely Quadratic Yukawa Potential. AIP
Conference Proceedings, 2679, 030003. https://doi.org/10.1063/5.0112829
22.William, E. S., Onye, S. C., Ikot, A. N., Nwachukwu, A. N., Inyang, E. P., Okon, I.
B., Akpan, I. O., & Ita, B. I. (2023). Magnetic Susceptibility and Magnetocaloric Effect
of Frost-Musulin Potential Subjected to Magnetic and Aharonov-Bohm (Flux) for CO
and NO Diatomic Molecules. Journal of Theoretical and Applied Physics, 17(2), 1–12.
https://doi.org/10.30495/JTAP.172318
23.Abu-Shady, M., & Inyang, E. P. (2023). The Fractional Schrödinger Equation with the
Generalized Woods-Saxon Potential. East European Journal of Physics, 1, 63–68.
https://doi.org/10.26565/2312-4334-2023-1-06
24.Inyang, E. P., Faithpraise, F. O., Amajama, J., William, E. S., Obisung, E. O., & Ntibi,
J. E. (2023). Theoretical Investigation of Meson Spectrum Using Exact Quantization
Rule Technique. East European Journal of Physics, 1, 53–62.
https://doi.org/10.26565/2312-4334-2023-1-05
25.Omugbe, E., Inyang, E. P., Njoku, I. J., Martínez-Flores, C., Jahanshir, A., Okon, I.
B., Eyube, E. S., & Onate, C. A. (2023). Approximate Mass Spectra and Root Mean
Square Radii of Quarkonia Using Cornell Potential Plus Spin-Spin Interactions. Nuclear
Physics A, 1034, 122653. https://doi.org/10.1016/j.nuclphysa.2023.122653
26.William, E. S., Okon, I. B., Inyang, E. P., Akpan, I. O., Ita, B., Nwachukwu, A. N.,
Onate, C. A., Omugbe, E., Okorie, U. S., Araujo, J. P., & Ikot, A. N. (2023). Quantum
Description of Magnetocaloric Effect, Thermo-Magnetic Properties, and Energy Spectra
of LiH, TiH, and ScH Diatomic Molecules Under the Influence of Magnetic and
Aharonov-Bohm (AB) Flux Fields with Deng-Fan-Screened Coulomb Potential Model.
Molecular Physics, e2195952. https://doi.org/10.1080/00268976.2023.2195952
27.Inyang, E. P., William, E. S., Omugbe, E., & Ayedun, F. (2023). The Study of H₂
and N₂ Diatomic Molecules in Arbitrary Dimensions with Collective Potential Model.
Bulgarian Journal of Physics, 50(5), 265–279.
https://doi.org/10.55318/bgjp.2023.50.3.265
28.Okon, I. B., Onate, C. A., Horchani, R., Popoola, O. O., Omugbe, E., William, E. S.,
Okorie, U. S., Inyang, E. P., Isonguyo, C. N., Udoh, M. E., Antia, A. D., Chen, W. L.,
Eyube, E. S., Araujo, J. P., & Ikot, A. N. (2023). Thermomagnetic Properties and Its
Effects on Fisher Entropy with Schiöberg Plus Manning Rosen Potential (SPMRP) Using

Nikiforov-Uvarov Functional Analysis (NUFA) and Supersymmetric Quantum
Mechanics (SUSYQM) Methods. Scientific Reports, 13, 8193.
https://doi.org/10.1038/s41598-023-34521-0
29.Inyang, E. P., Okon, I. B., Faithpraise, F. O., William, E. S., Okoi, P. O., & Ibanga, E.
A. (2023). Quantum Mechanical Treatment of Shannon Entropy Measure and Energy
Spectra of Selected Diatomic Molecules with the Modified Kratzer Plus Generalized
Inverse Quadratic Yukawa Potential Model. Journal of Theoretical and Applied Physics,
17(4), 1–13. https://doi.org/10.57647/j.jtap.2023.1704.40
30.Omugbe, E., Aniezi, J. N., Inyang, E. P., Njoku, I. J., Onate, C. A., Eyube, E. S.,
Ogundeji, S. O., Jahanshir, A., Onyeaju, M. C., Mbamara, C., Obodo, R. M., & Okon, I.
B. (2023). Non-Relativistic Mass Spectra Splitting of Heavy Mesons Under the Cornell
Potential Perturbed by Spin–Spin, Spin–Orbit, and Tensor Components. Few-Body
Systems, 64, 66. https://doi.org/10.1007/s00601-023-01848-3
31. Omugbe, E., Osafile, O. E., Okon, I. B., Inyang, E. P., William, E. S., & Jahanshir, A.
(2022). Any-state energy of the spinless Salpeter equation under the Cornell potential by
the WKB approximation method: An application to mass spectra of mesons. Few-Body
Systems, 63(1), 1–7. https://doi.org/10.1007/s00601-022-01453-4
32. Ibanga, E. A., Agbo, G. A., Inyang, E. P., Ayedun, F., & Onuora, L. O. (2020).
Prediction of solar cycles: Implication for the trend of global surface temperature.
Communication in Physical Science, 6(2).
33. Etim, I. P., Inyang, E. P., & Thompson, E. A. (2022). Digital data acquisition for
gamma-ray spectroscopy. European Journal of Applied Physics, 4(1).
https://doi.org/10.24018/ejphysics.2022.4.1.139
34. Inyang, E. P., William, E. S., Omugbe, E., Ibanga, E. A., Ayedun, F., Akpan, I. O., &
Ntibi, J. E. (2022). Application of Eckart-Hellmann potential to study selected diatomic
molecules using Nikiforov-Uvarov functional analysis method. Revista Mexicana de
Física, 68, 1–14.
35. William, E. S., Inyang, E. P., Akpan, I. O., Obu, J. A., Nwachukwu, A. N., & Inyang,
E. P. (2022). Ro-vibrational energies and expectation values of selected diatomic
molecules via Varshni plus modified Kratzer potential model. Indian Journal of Physics.
https://doi.org/10.1007/s12648-022-02308-0
36. Inyang, E. P., Iwuji, P. C., Ntibi, J. E., William, E. S., & Ibanga, E. A. (2022).
Solutions of the Schrödinger equation with Hulthén-screened Kratzer potential:
Application to diatomic molecules. East European Journal of Physics, 1, 1–11.
https://doi.org/10.26565/2312-4334-2022-2-02
37. Omugbe, E., Osafile, O. E., Okon, I. B., Eyube, E. S., Inyang, E. P., Okorie, U. S.,
Jahanshir, A., & Onate, C. A. (2022). Non-relativistic bound state solutions with δ-
deformed Kratzer-type potential using the supersymmetric WKB method: Application to

theoretical-information measures. European Physical Journal D, 76, 72.
https://doi.org/10.1140/epjd/s10053-022-00471-2
38. William, E. S., Okon, I. B., Ekerenam, O. O., Akpan, I. O., Ita, B. I., Inyang, E. P.,
Etim, I. P., & Umoh, I. F. (2022). Analyzing the effects of magnetic and Aharonov-Bohm
(AB) flux fields on the energy spectra and thermal properties of N₂, NO, CO, and H₂
diatomic molecules. International Journal of Quantum Chemistry.
https://doi.org/10.1002/qua.26925
39. Inyang, E. P., Ntibi, J. E., Akintola, O. O., Ibanga, E. A., Ayedun, F., & William, E.
S. (2022). Analytical solutions to the Schrödinger equation with a combined potential
using the series expansion method to study selected diatomic molecules. Communication
in Physical Science, 8(2), 226–244.
40. Inyang, E. P., Iwuji, P. C., Ntibi, J. E., Omugbe, E., Ibanga, E. A., & William, E. S.
(2022). Quark-antiquark study with inversely quadratic Yukawa potential using
Nikiforov-Uvarov functional analysis method. East European Journal of Physics, 2,
45–51. https://doi.org/10.26565/2312-4334-2022-2-05
41. Inyang, E. P., William, E. S., Ntibi, J. E., Obu, J. A., Iwuji, P. C., & Inyang, E. P.
(2022). Approximate solutions of the Schrödinger equation with Hulthén plus screened
Kratzer potential using the Nikiforov-Uvarov functional analysis method: An application
to diatomic molecules. Canadian Journal of Physics. https://doi.org/10.1139/cjp-2022-
0030
42. Inyang, E. P., Ikot, A. N., Inyang, E. P., Akpan, I. O., Ntibi, J. E., Omugbe, E., &
William, E. S. (2022). Analytic study of thermal properties and masses of heavy mesons
with quarkonium potential. Results in Physics. https://doi.org/10.1016/j.rinp.2022.105754
43. Inyang, E. P., Ntibi, J. E., Ayedun, F., Ibanga, E. A., & William, E. S. (2021).
Applicability of Hulthén-Hellmann potential to predict the mass spectra of heavy mesons
via series expansion method. Nigerian Journal of Physics, 30(2), 56–65.
44. Inyang, E. P., William, E. S., Ibanga, E. A., Ntibi, J. E., & Akintola, O. O. (2022).
Bound state solutions to the Schrödinger equation for selected diatomic molecules.
Journal of the Nigerian Association of Mathematical Physics, 64, 20–40.
45. Inyang, E. P., Inyang, E. P., Akpan, I. O., & William, E. S. (2021). Solutions of the
Schrödinger equation with quarkonium potential to predict the mass spectra of heavy
mesons via series expansion method. International Journal of Natural and Applied
Sciences, 14(Special Edition), 61–66.
46. William, E. S., Inyang, E. P., Ntibi, J. E., Obu, J. A., & Inyang, E. P. (2022).
Solutions of the non-relativistic equation interacting with the Varshni-Hellmann potential
model with some selected diatomic molecules. Jordan Journal of Physics, 15(2),
179–193.

47. Okoi, P. O., Edet, C. O., Magu, T. O., & Inyang, E. P. (2022). Eigensolution and
expectation values of the Hulthén and generalized inverse quadratic Yukawa potential.
Jordan Journal of Physics, 15(2), 137–148.
48. Inyang, E. P., Obisung, E. O., Iwuji, P. C., Ntibi, J. E., Amajama, J., & William, E. S.
(2022). Masses and thermal properties of charmonium and bottomonium mesons. Journal
of the Nigerian Society of Physical Sciences, 4, 875–884.
https://doi.org/10.46481/jnsps.2022.884
49. Agbo, E. P., Nkajoe, U., Okono, M. A., Inyang, E. P., & Edet, C. O. (2022).
Temperature and solar radiation interaction in all six zones of Nigeria. Indian Journal of
Physics, 1–15. https://doi.org/10.1007/s12648-022-02429-6
50. Edet, C. O., Mahmoud, S., Inyang, E. P., Ali, N., Aljunid, S. A., Endut, R., Ikot, A.
N., & Asjad, M. (2022). Non-relativistic treatment of the 2D electron system interacting
via Varshni-Shukla potential using the asymptotic iteration method. Mathematics, 10(15),
2812–2824. https://doi.org/10.3390/math10152824
51. Inyang, E. P., & Obisung, E. O. (2022). The study of electronic states of Ni and ScI
molecules with screened Kratzer potential. East European Journal of Physics, 3, 32–38.
https://doi.org/10.26565/2312-4334-2022-3-04
52. Inyang, E. P., Obisung, E. O., William, E. S., & Okon, I. B. (2022). Non-relativistic
study of mass spectra and thermal properties of a quarkonium system with Eckart-
Hellmann potential. East European Journal of Physics, 3, 104–114.
https://doi.org/10.26565/2312-4334-2022-3-14
53. Inyang, E. P., Inyang, E. P., William, E. S., Ntibi, J. E., & Ibanga, E. A. (2022).
Bound state solutions of the Schrödinger equation with Frost-Musulin potential using the
Nikiforov-Uvarov functional analysis (NUFA) method. Bulgarian Journal of Physics, 20,
1–11.
54. Inyang, E. P., Ayedun, F., Ibanga, E. A., Lawal, K. M., Okon, I. B., William, E. S.,
Ekwevugbe, O., Onate, C. A., Antia, A. D., & Obisung, E. O. (2022). Analytical
solutions of the N-dimensional Schrödinger equation with modified screened Kratzer plus
inversely quadratic Yukawa potential and thermodynamic properties of selected diatomic
molecules. Results in Physics. https://doi.org/10.1016/j.rinp.2022.106075
55. Ntibi, J. E., Inyang, E. P., Inyang, E. P., William, E. S., & Ibekwe, E. E. (2022).
Solutions of the N-dimensional Klein-Gordon equation with ultra generalized
exponential–hyperbolic potential to predict the mass spectra of heavy mesons. Jordan
Journal of Physics, 15(4), 393–402. https://doi.org/10.47011/15.4.8
56. William, E. S., Inyang, E. P., Okon, I. B., Ekerenam, O. O., Onate, C. A., Akpan, I.
O., Nwachukwu, A. N., Ita, B. I., Umoh, I. F., & Omugbe, E. (2022). Thermo-magnetic
properties of Manning-Rosen plus inversely quadratic Yukawa potential under the

influence of magnetic and Aharonov-Bohm (AB) flux fields. Indian Journal of Physics.
https://doi.org/10.1007/s12648-022-02510-0
57. Abu-Shady, M., & Inyang, E. P. (2022). Heavy-light meson masses in the framework
of trigonometric Rosen-Morse potential using the generalized fractional derivative. East
European Journal of Physics, 4, 80–87. https://doi.org/10.26565/2312-4334-2022-4-06
58. Ibekwe, E. E., Emah, J. B., Inyang, E. P., & Akpan, A. O. (2022). Mass spectrum of
heavy quarkonium for combined potentials (modified Kratzer plus screened Coulomb
potential). Iranian Journal of Science and Technology, Transactions of Science.
https://doi.org/10.1007/s40995-022-01377-4
59. Inyang, E. P., Ayedun, F., Ibanga, E. A., & Lawal, K. M. (2022). Analytical solutions
to the Schrödinger equation with collective potential models: Application to quantum
information theory. East European Journal of Physics, 4, 87–98.
https://doi.org/10.26565/2312-4334-2022-4-06
60. Inyang, E. P., Ntibi, J. E., Obisung, E. O., William, E. S., Ibekwe, E. E., Akpan, I. O.,
& Inyang, E. P. (2022). Expectation values and energy spectra of the Varshni potential in
arbitrary dimensions. Jordan Journal of Physics, 5, 495–509.
https://doi.org/10.47011/15.5.7
61. Ikot, A. N., Obagboye, L. F., Okorie, U. S., Inyang, E. P., Amadi, P. O., & Abdel-
Aty, A. (2022). Solutions of Schrödinger equation with generalized Cornell potential
(GCP) and its applications to diatomic molecular systems in D-dimensions using
extended Nikiforov–Uvarov (ENU) formalism. The European Physical Journal Plus, 137,
1370. https://doi.org/10.1140/epjp/s13360-022-03590-x
62. Ibekwe, E. E., Inyang, E. P., Emah, J. B., Akpan, J. B., & Yawo, O. J. (2022). Mass
spectra and thermal properties of deformed Schrödinger equation for pseudoharmonic
potential. Sri Lankan Journal of Physics, 23(2), 63–76.
https://doi.org/10.4038/sljp.v23i2.8119
63. Inyang, E. P., Obisung, E. O., Amajama, J., Bassey, D. E., William, E. S., & Okon, I.
B. (2022). The effect of topological defect on the mass spectra of heavy and heavy-light
quarkonia. Eurasian Physical Technical Journal, 19(4), 78–87.
https://doi.org/10.31489/2022No4/78-87
64. Inyang, E. P., Inyang, E. P., Akpan, I. O., Ntibi, J. E., & William, E. S. (2021).
Masses and thermodynamic properties of a quarkonium system. Canadian Journal of
Physics, 99(11), 982–990. https://doi.org/10.1139/cjp-2020-0578
65. Inyang, E. P., Ntibi, J. E., Inyang, E. P., Ayedun, F., Ibanga, E. A., Ibekwe, E. E., &
William, E. S. (2021). Applicability of Varshni potential to predict the mass spectra of
heavy mesons and its thermodynamic properties. Applied Journal of Physical Science,
3(3), 92–108. https://doi.org/10.31248/AJPS2021.057

66. Inyang, E. P., Ntibi, J. E., Ibanga, E. A., Ayedun, F., Inyang, E. P., Ibekwe, E. E.,
William, E. S., & Akpan, I. O. (2021). Thermodynamic properties and mass spectra of a
quarkonium system with ultra generalized exponential-hyperbolic potential.
Communications in Physical Science, 7(2), 97–114.
67. Inyang, E. P., Ita, B. I., & Inyang, E. P. (2021). Relativistic treatment of quantum
mechanical gravitational-harmonic oscillator potential. European Journal of Applied
Physics, 3(3), 42–47. https://doi.org/10.24018/ejphysics.2021.3.3.83
68. Inyang, E. P., Ibanga, E. A., Ayedun, F., Ntibi, J. E., & William, E. S. (2021). Non-
relativistic study of generalized Yukawa potential to predict the mass-spectra of heavy
quarkonium system. Journal of the Nigerian Association of Mathematical Physics, 60,
9–14.
69. Inyang, E. P., Inyang, E. P., Karniliyus, J., Ntibi, J. E., & William, E. S. (2021).
Diatomic molecules and mass spectrum of heavy quarkonium system with Kratzer-
screened Coulomb potential (KSCP) through the solutions of the Schrödinger equation.
European Journal of Applied Physics, 3(2), 48–55.
70. Omugbe, E., Osafile, O. E., Inyang, E. P., & Jahanshir, A. (2021). Bound state
solutions of the hyper-radial Klein-Gordon equation under the Deng-Fan potential by
WKB and SWKB methods. Physica Scripta, 96(12), 125408.
https://doi.org/10.1088/1402-4896/ac38d4
71. Ibekwe, E. E., Okorie, U. S., Emah, J. B., Inyang, E. P., & Ekong, S. A. (2021). Mass
spectrum of heavy quarkonium for screened Kratzer potential (SKP) using series
expansion method. The European Physical Journal Plus, 136(1), 1–11.
https://doi.org/10.1140/epjp/s13360-021-01090-y
72. Inyang, E. P., William, E. S., Obu, J. O., Ita, B. I., Inyang, E. P., & Akpan, I. O.
(2021). Energy spectra and expectation values of selected diatomic molecules through the
solutions of Klein-Gordon equation with Eckart-Hellmann potential model. Molecular
Physics, 119(23), e1956615. https://doi.org/10.1080/00268976.2021.1956615
73. Inyang, E. P., William, E. S., & Obu, J. A. (2021). Eigensolutions of the N-
dimensional Schrödinger equation interacting with Varshni-Hulthen potential model.
Revista Mexicana de Física, 67(2), 193–205.
74. Inyang, E. P., Inyang, E. P., William, E. S., & Ibekwe, E. E. (2021). Study on the
applicability of Varshni potential to predict the mass-spectra of the quark-antiquark
systems in a non-relativistic framework. Jordan Journal of Physics, 14(4), 337–345.
75. Inyang, E. P., Inyang, E. P., Ntibi, J. E., Ibekwe, E. E., & William, E. S. (2021).
Approximate solution of D-dimensional Klein-Gordon equation with Yukawa potential
via Nikiforov-Uvarov method. Indian Journal of Physics, 95, 2733–2739.
https://doi.org/10.1007/s12648-020-01933-x

76. Thompson, E. A., Inyang, E. P., & William, E. S. (2021). Analytical determination of
the non-relativistic quantum mechanical properties of near doubly magic nuclei. Physical
Sciences and Technology, 8(3–4), 10–21. https://doi.org/10.26577/phst.2021.v8.i2.02
77. Inyang, E. P., Inyang, E. P., Akpan, I. O., Ntibi, J. E., & William, E. S. (2020).
Analytical solutions of the Schrödinger equation with class of Yukawa potential for a
quarkonium system via series expansion method. European Journal of Applied Physics,
2, 26. https://doi.org/10.24018/ejphysics.2020.2.6.26
78. Akpan, I. O., Inyang, E. P., Inyang, E. P., & William, E. S. (2021). Approximate
solutions of the Schrödinger equation with Hulthen-Hellmann potentials for a
quarkonium system. Revista Mexicana de Física, 67(3), 482–490.
https://doi.org/10.31349/RevMexFis.67.482
79. Inyang, E. P., Inyang, E. P., Ntibi, J. E., & William, E. S. (2020). Analytical solutions
of the Schrödinger equation with Kratzer-screened Coulomb potential for a quarkonium
system. Bulletin of Pure and Applied Sciences-Physics, 40D(1), 1–12.
80. William, E. S., Obu, J. A., Akpan, I. O., Thompson, E. A., & Inyang, E. P. (2020).
Analytical investigation of the single-particle energy spectrum in magic nuclei of 56Ni
and 116Sn. European Journal of Applied Physics, 2, 28.
https://doi.org/10.24018/ejphysics.2020.2.6.28
81. William, E. S., Inyang, E. P., & Thompson, E. A. (2020). Arbitrary solutions of the
Schrödinger equation interacting with Hulthen-Hellmann potential model. Revista
Mexicana de Física, 66(6), 730–741. https://doi.org/10.31349/RevMexFis.66.730
82. Inyang, E. P., Ntibi, J. E., Inyang, E. P., William, E. S., & Ekechukwu, C. C. (2020).
Any L-state solutions of the Schrödinger equation interacting with class of Yukawa-
Eckert potentials. International Journal of Innovative Science, Engineering &
Technology, 7(11), 2348–2362.
83. Ntibi, J. E., Inyang, E. P., Inyang, E. P., & William, E. S. (2020). Relativistic
treatment of D-dimensional Klein-Gordon equation with Yukawa potential. International
Journal of Innovative Science, Engineering & Technology, 7(11), 2364–2379.
84. Inyang, E. P., Inyang, E. P., & Latif, M. B. (2019). A correlation: TL response of
synthetic fused quartz with 60Co gamma (high dose) source and 90Sr/90Y beta (low
dose) source. Bulletin of Pure and Applied Sciences-Physics, 38(1), 06–12.
85. Inyang, E. P., Inyang, E. P., William, E. S., Ushie, E. S., & Oteikwu, G. A. (2018).
Measurement of electric field radiation from 11KVA high tension power line and its
environmental effects in Calabar metropolis, Nigeria. Physical Science International
Journal, 18(2). ISSN: 2348-0130.

86. Inyang, E. P., Inyang, E. P., & William, E. S. (2017). Assessment of the exposure of
radio frequency radiation from Wi-Fi routers in Calabar metropolis, Nigeria. Nigerian
Journal of Scientific Research, 16(2), 490–494.

My research is broadly categorized as follows;
 Quantum/Mathematical Physics (Particle Physics, Atomic Structure, and Molecular processes in external fields).
 Applied Nuclear Physics, specifically in studying the distribution and impact of natural and artificial radioisotopes in the environment.
 Quantum Information Theory (Information Entropies; Shannon, Fisher entropies etc.)
 Advanced mathematical techniques such as; the Nikiforov-Uvarov (NU) method, the Nikiforov-Uvarov functional analysis (NUFA) method, the Extended Nikiforov-Uvarov method, the Exact Quantization Rule and the series expansion method are methods I employ to solve the Schrodinger equation (with several potential models) and other relativistic equations (Dirac equation, Klein-Gordon, etc.) in my research.

Research gate               –        https://www.researchgate.net/profile/Etido_Inyang
Google Scholar             –       https://scholar.google.com/citations?user=NkYIDhoAAAAJ&hl=en
 Scopus Author 1D       –       http://www.scopus.com/authid/detail.url?authorId=16175170000
ORCID ID:                   –       https://orcid.org/0000-0002-5031-3297
LINKEDIN                   –        https://www.linkedin.com/in/etido-inyang-phd-mnip-157196210
Web of Science             –        https://www.webofscience.com/wos/author/record/AED-8831-2022

1. Inyang, E. P., Lawal, K. M., & Nwachukwu, I.M.(2024). Senate Research Grant of the National Open University of Nigeria (NOUN) on the topic: Investigation of the Schrodinger Equation with Solvable Potential Models for Molecular and Information Systems. With grant number: NOUN/DRA/SRG/AW/045 (2.5 million)

2. Simon, J., Inyang, E. P., & Kama, H.(2024). Senate Research Grant of the National Open University of Nigeria (NOUN) on the topic: An Investigation of Radioactivity and Heavy Metals Levels in Rice Grown in Flood-Prone Areas of Adamawa State, Nigeria. With grant number: NOUN/DRA/SRG/AW/043 (2.5 million)

3. Inyang, E. P., & Edet, C. O., (2023). The 2017-2022 merged TETFUND INSTITUTION BASED RESEARCH (IBR) Project on the topic: Quantum Mechanical Description of Heat Engines using Exponential-type Potential Models. With grant number NOUN/DRA/TETFUNDAW/VOL I(1.9 million)

4. Lawal, K. M.,Inyang, E. P., Ayedun, F.,& Ibanga, E. A., (2022). Senate Research Grant of the National Open University of Nigeria (NOUN) on the topic: Assessment of indoor Radon Gas Concentration in National Open University of Nigeria selected Study Centres. With grant number: NOUN/DRA/LARTL/GN0025/VOL II (4.5 million)

5. Ayedun, F.,Inyang, E. P., Lawal, K. M., & Ibanga, E. A.(2022). Senate Research Grant of the National Open University of Nigeria (NOUN) on the topic: Analytical Solution to the Schrodinger Equation with Collective Potential Models: Application to Quantum Information Theory. With grant number: NOUN/DRA/LARTL/GN0026/VOL II. (3.5 million)

New/Returning Students